of normal function, platelets were used in aggregation studies no sooner than 2 hours after final resuspension. In all studies, 3 ml aliquots of platelet suspension were added to tubes containing CaCl $_2$ solution (60 μl of 50 mM solution with a final concentration of 1 mM). Human fibrinogen (Sigma, F 4883) and 8-sulphophenyltheophylline (8-SPT which was used to block any P_1 -agonist activity of compounds) were added to give final concentrations of 0.2 mg/ml (60 μl of 10 mg/ml solution of clottable protein in saline) and 300 nM (10 μl of 15 mM solution in 6% glucose), respectively. Platelets or buffer as appropriate were added in a volume of 150 μl to the individual wells of a 96 well plate. All measurements were made in triplicate in platelets from each donor. The agonist/antagonist potency was assessed as follows. Aggregation responses in 96 well plates were measured using the change in absorbance given by the plate reader at 660 nm. Either a Bio-Tec Ceres 900C or a Dynatech MRX were used as the plate reader. The absorbance of each well in the plate was read at 660 20 nm to establish a baseline figure. Saline or the appropriate solution of test compound was added to each well in a volume of 10 μ l to give a final concentration of 0, 0.01, 0.1, 1, 10 or 100 mM. The plate was then shaken for 5 min on an orbital shaker on setting 10 and the absorbance read at 25 660 nm. Aggregation at this point was indicative of agonist activity of the test compound. Saline or ADP (30 mM; 10 μ l of 450 mM) was then added to each well and the plate shaken for a further 5 min before reading the absorbance again at 660 nm. 30 Antagonist potency was estimated as a % inhibition of the control ADP response to obtain an IC_{50} . Compounds exemplified have pIC_{50} values of more than 5.0. What is claimed is: ## 1. A compound of formula (I) $$\begin{array}{c} R \\ \\ R^4 \end{array} \begin{array}{c} N = N \\ N \\ R^3 \end{array} \begin{array}{c} M \\ N \\ SR^1 \end{array}$$ wherein: R^1 is C_{3-5} alkyl optionally substituted by one or more halogen atoms; R² is a phenyl group, optionally substituted by one or more fluorine atoms; R³ and R⁴ are both hydroxy; R is XOH, where X is CH₂, OCH₂CH₂ or a bond; or a pharmaceutically acceptable salt or solvate thereof, or 55 a solvate of such a salt provided that: when X is CH_2 or a bond, R^1 is not propyl; when X is CH₂ and R¹ is CH₂CH₂CF₃, butyl or pentyl, the phenyl group at R² must be substituted by fluorine; when X is OCH₂CH₂ and R¹ is propyl, the phenyl group 60 at R² must be substituted by fluorine. 2. A compound according to claim 1 in which R¹ is 3,3,3[,]-trifluoropropyl, butyl or propyl. 3. A compound according to claim 1 in which R² is phenyl or 4-fluorophenyl or 3,4-difluorophenyl. **4**. A compound according to claim **1** in which R is CH₂OH or OCH₂CH₂OH. 5. A compound according to claim 1 which is: [1R-[1 α ,2 α ,3 β (1R*,2S*),5 β]]-3-[7-[[2-(4-Fluorophenyl) cyclopropyl]amino]-5-[(3,3,3-trifluoropropyl)thio]-3H-1,2, 3-triazolo[4,5-d]pyrimidin-3-yl]-5-(hydroxymethyl)-cyclopentane-1,2-diol; [1R-[1\alpha,2\alpha,3\beta(1R*,2S*),5\beta]]-3-[7-[[2-(3,4-Difluorophenyl)cyclopropyl]amino]-5-[(3,3,3-trifluoropropyl)thio]-3H-1,2,3-triazolo[4,5-d]pyrimidin-3-yl]-5-(hydroxym-10 ethyl)-cyclopentane-1,2-diol; [[1S- $(1\alpha,2\alpha,3\beta(1S*,2R*),5\beta]$]]/ $IS-[I\alpha,2\alpha,3\beta(IS*,2R*),5\beta]$ /-3-[7-[[2-(3,4-Difluorophenyl)cyclopropyl]amino]-5-(propylthio)-3H-1,2,3-triazolo[4,5-d]pyrimidin-3-yl]-5-(2-hydroxyethoxy)-cyclopentane-1,2-diol; 1R- $[1\alpha,2\alpha,3\beta(1R^*,2S^*),5\beta]]$ -3-[5-(Butylthio)-7-[[2-(3, 4-difluorophenyl)cyclopropyl]amino]-3H-1,2,3-triazolo[4, 5-d]pyrimidin-3-yl]-5-(hydroxymethyl)-cyclopentane-1,2-diol: [1S-[1α , 2β , 3β , 4α (1S*,2R*)]]-4-[5-(Butylthio)-[7-[[2-(4-flurophenyl)cyclopropyl]amino]]7-[[2-(4-flurophenyl)cyclopropyl]amino]-3H-1,2,3-triazolo[4,5-d]pyrimidin-3-yl]-cyclopentane-1,2,3-triol; [1S-(1\alpha,2\alpha,3\beta(1S*,2R*),5\beta]-3-[7-[[2-(3,4-Diffuorophenyl)cyclopropyl]amino]-5-[(3,3,3-triffuoropropyl)thio]-3H-1,2,3-triazolo[4,5-d]pyrimidin-3-yl]-5-(2-hydroxyethoxy)-cyclopentane-1,2-diol; $[1S-[1\alpha,2\alpha,3\beta,5\beta(1S^*,2R^*)]]^{-3}-(2-Hydroxyethoxy)^{-5}-30 \quad [7-(2-phenylcyclopropyl)amino]^{-5}-[(3,3,3-trifluoropropyl) \\ thio]^{-3}H^{-1},2,3-triazolo[4,5-d]pyrimidin^{-3}-yl]^{-cyclopentane^{-1},2-diol} \quad [1S-[1\alpha,2\beta,3\beta,4\alpha(1S^*,2R^*)]]^{-4}-[5-(Butylthio)^{-7}-[[2-(3,4-difluorophenyl)cyclopropyl]amino]^{-3}H^{-1},2,3-triazolo[4,5-d]pyrimidin^{-3}-yl]cyclopentane^{-1},2,3-triol;$ [1S- $[1\alpha,2\alpha,3\beta(1S^*,2R^*),5\beta]$]-3-[5-(Butylthio)-7-[(2-phenylcyclopropyl)amino]-3H-1,2,3-triazolo[4,5-d]pyrimidin-3-yl]-5-[(2-hydroxethoxy)-cyclopentane-1,2-diol; or pharmaceutically acceptable salts or solvates thereof, or solvates of such salts. **6**. A pharmaceutical composition comprising a compound according to claim **1** in combination with a pharmaceutically acceptable diluent, [adjuvent] *adjuvant* and/or carrier. 7. A method of treatment of post-myocardial infarction which comprises administering to a patient suffering therefrom a therapeutically effective amount of a compound according to claim 1. **8**. A process for the preparation of a compound of formula (I) which comprises reacting a compound of formula (II): $$\begin{array}{c} N = N \\ N$$ where R, R¹, R³ and R⁴ are as defined in claim 1, or are protected derivatives thereof, or R³ and R⁴ together form a bond in the 5-membered ring, or R is CH₂CH₂OR' where R' is C₁₋₆ alkyl or benzyl, and L is a leaving group, with a compound of formula (III):